Cerebellar flocculus and ventral paraflocculus Purkinje cell activity during predictive and visually driven pursuit in monkey.
نویسندگان
چکیده
Purkinje cells in the flocculus and ventral paraflocculus were studied in tasks designed to distinguish predictive versus visually guided mechanisms of smooth pursuit. A sum-of-sines task allowed studies of complex predictive pursuit. A perturbation task examined visually driven pursuit during unpredictable right-angle changes in target direction. A gap task examined pursuit that was maintained when the target was turned off. Neural activity patterns were quantified using multi-linear models with sensitivities to the position, velocity, and acceleration of both motor output (eye motion) and visual input (retinal slip). During the sum-of-sines task, neural responses led eye motion by an average of 12 ms, a value larger than the 9-ms transmission delay between flocculus stimulation and eye motion. This suggests that flocculus/paraflocculus neurons drove pursuit along predictable sum-of-sines trajectories. In contrast, neural responses led eye motion by an average of only 2 ms during the perturbation task and by 6 ms during the gap task. These values suggest a follow-up role during tasks more heavily dependent on visual processing. Activity in all three tasks was explained primarily by sensitivities to eye position and velocity. Eye acceleration played a minor role during ongoing pursuit, although its influence on firing rate increased during the high accelerations following unexpected changes in target motion. Retinal slip had a relatively small influence on responses during pursuit. This was particularly true for the sum-of-sines and gap tasks where predictive control eliminated any consistent retinal-slip signals that might have been used to drive the eye. Surprisingly, the influence of retinal slip did not increase appreciably during unpredictable perturbations in target direction that generated large amounts of retinal slip. Thus although visual control signals are needed in varying amounts during the three pursuit tasks, they have been converted to motor control signals by the time they leave the flocculus/paraflocculus system. Individual neurons showed a remarkable constancy in eye-sensitivity direction across tasks that indicated direct links to oculomotor neurons. However, some neurons showed changes in sensitivity magnitude that suggested changes in control strategy for different tasks. Magnitude differences were largest for the perturbation task. We conclude that the flocculus/paraflocculus system plays a major role in driving predictive pursuit. It also processes visually driven control signals that originate in other brain regions after a slight delay.
منابع مشابه
Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR.
The vestibuloocular reflex (VOR) generates compensatory eye movements to stabilize visual images on the retina during head movements. The amplitude of the reflex is calibrated continuously throughout life and undergoes adaptation, also called motor learning, when head movements are persistently associated with image motion. Although the floccular-complex of the cerebellum is necessary for VOR a...
متن کاملCerebellar flocculus and paraflocculus Purkinje cell activity during circular pursuit in monkey.
Responses from 69 Purkinje cells in the flocculus and paraflocculus of two rhesus monkeys were studied during smooth pursuit of targets moving along circular trajectories and compared with responses during sinusoidal pursuit and fixation. A variety of interesting responses was observed during circular pursuit. Although some neurons fired most strongly in a single preferred direction during cloc...
متن کاملComputational study on monkey VOR adaptation and smooth pursuit based on the parallel control-pathway theory.
Much controversy remains about the site of learning and memory for vestibuloocular reflex (VOR) adaptation in spite of numerous previous studies. One possible explanation for VOR adaptation is the flocculus hypothesis, which assumes that this adaptation is caused by synaptic plasticity in the cerebellar cortex. Another hypothesis is the model proposed by Lisberger that assumes that the learning...
متن کاملContribution of the cerebellar flocculus to gaze control during active head movements.
The flocculus and ventral paraflocculus are adjacent regions of the cerebellar cortex that are essential for controlling smooth pursuit eye movements and for altering the performance of the vestibulo-ocular reflex (VOR). The question addressed in this study is whether these regions of the cerebellum are more globally involved in controlling gaze, regardless of whether eye or active head movemen...
متن کاملRole of the cerebellar flocculus region in cancellation of the VOR during passive whole body rotation.
A series of studies were carried out to investigate the role of the cerebellar flocculus and ventral paraflocculus in the ability to voluntarily cancel the vestibuloocular reflex (VOR). Squirrel monkeys were trained to pursue moving visual targets and to fixate a head stationary or earth stationary target during passive whole body rotation (WBR). The firing behavior of 187 horizontal eye moveme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 84 4 شماره
صفحات -
تاریخ انتشار 2000